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PHYSICAL REVIEW E

Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetic Code

TEMPEST�

X. Q. Xu�

Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
(Dated: November 8, 2007)

We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric
�eld for the �rst time using a fully nonlinear (full-f) continuum code TEMPEST in a circular
geometry. A set of gyrokinetic equations are discretized on a �ve dimensional computational grid
in phase space. The present implementation is a Method of Lines approach where the phase-space
derivatives are discretized with �nite di�erences and implicit backwards di�erencing formulas are
used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons.
The neoclassical electric �eld is obtained by solving gyrokinetic Poisson equation with self-consistent
poloidal variation. With our 4D ( ; �; �; �) version of the TEMPEST code we compute radial particle
and heat 
ux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric
�eld, which we compare with neoclassical theory with a Lorentz collision model. The present work
provides a numerical scheme and a new capability for self-consistently studying important aspects
of neoclassical transport and rotations in toroidal magnetic fusion devices.

PACS numbers: 52.55.Fa, 52.25.Fi, 52.35.Ra, 52.65.Tt, 52.65.Kj

I. INTRODUCTION

The outstanding scienti�c problem in the plasma
boundary lies in understanding the structure of the
edge transport barrier, which forms spontaneously in
high-performance (H-mode) discharges in tokamaks. At
present, the physics governing the structure of the edge
pedestal remains controversial because of the wide range
of physical processes, scale lengths, and timescales that
come into play. First of all, the fact that the fundamen-
tal characteristics of the medium changes from a colli-
sional 
uid plasma to a collisionless Vlasov plasma as
one moves inward across the pedestal will force us to go
beyond the theoretical descriptions of plasma transport
presently used in simulations; second, the radial width
of the pedestal observed in experiment is comparable to
the radial width of individual particle orbits (leading to
large distortions of the local distribution function from a
Maxwellian); and third the mean-free-path is long com-
pared to the connection length in the hot plasma at the
top of the edge pedestal (violating the assumptions un-
derlying a collisional 
uid model). In contrast to sev-
eral gyro-kinetic code developments using particle-in-cell
technique [1, 2] in the pedestal region, we adopt the con-
tinuum method for our full-F code development for the
following reasons: (1).to avoid the intrinsic noise issue
associated with �nite number of particles. When simu-
lating equilibrium and 
uctuations at the same time, the
concern over noise is even more serious for fully nonlin-
ear particle code development because the particle noise
from equilibrium simulations is on the same order as

uctuation; (2).to utilize existing Fokker-Planck collision
packages developed in the community over the years by

�URL: http://www.mfescience.org/users/xu/

solving the nonlinear Fokker-Planck collision operator on
velocity meshes.

In a magnetized plasma with straight �eld lines, the
particle orbits are circular gyrations and classical di�u-
sion refers to transport of particles due to Coulomb col-
lisions, taking the particle gyro-orbits in the magnetic
�eld into account. In a toroidal magnetic �eld, a single
particle primarily undergoes parallel streaming along the
magnetic �eld line and cross-�eld drift. The combination
of two motions produces various particle orbits when pro-
jecting its three-dimensional orbit onto a poloidal cross-
sections. The orbits of passing particles are closed curves
which do not quite coincide with 
ux surfaces because of
drift motion across the magnetic �eld. The banana orbits
of trapped particles are traced by bounce motion along
the �eld line accompanied by a slow drift motion across
the magnetic �eld with the shape of a banana. Trapped
particles are trapped inside a magnetic well, typically
outboard of the torus. Neoclassical transport refers to
the radial orbital excursions of particles due to Coulomb
collisions. The particle radial displacement in one colli-
sion time is typically enhanced because the displacement
of the gyrocenter from the original magnetic surface is
typically larger than the gyroradius. Neoclassical tur-
bulent transport refers to the radial orbital excursions
of particles due to small-scale turbulence decorrelation.
Therefore the success of neoclassical simulations relies
on the accurate numerical description of the passing and
trapped particle orbits, Coulomb collisions and turbu-
lence.

In neoclassical plasmas, a radial electric �eld arises be-
cause of di�erent di�usion rates of ions and electrons.
This electric �eld ensures quasi-neutrality and makes
the radial 
uxes of electrons and ions equal. This 
ux
corresponds to the 
ux arising from ion-electron colli-
sions. So far, either in particle simulations or contin-
uum simulations, the electrostatic potential is assumed
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to be constant on a 
ux surface. The radial elec-
tric �eld development is evaluated according to the ra-
dial Ampere's law averaged over a closed-
ux surface
4�hJ � r i + @hE � r i@t = 0 where  is the poloidal
magnetic 
ux, h� � �i represents the 
ux surface average,
and J is the sum of all the current in the plasma, in-
cluding the classical polarization current, gyroviscosity
current, and the ion guiding-center current (the electron
current is typically neglected in tokamak geometry be-
cause it is smaller than the ion current by a factor of
mass ratio me=mi). The steady state neoclassical radial
electric �eld E on a magnetic surface is obtained from
the condition hj i = 0. However, this method is incom-
plete in the sense that the poloidal electric �eld cannot
be solved simultaneously in a consistent way. This is an
unsatisfactory situation since the potential varies signif-
icantly in the edge plasma around the X-point and in
the divertor leg region due to the presheath dynamics.
The gyrokinetic Poisson equation is seldom used becasue
the small coeÆcient in front of Poisson operator asso-
ciated with the gyroradius makes the quation singular
when �i=Lp � 1. Here Lp is a characteristic gradient
scale length of plasma pro�le. For this reason, no single
code exists to simulate both neoclassical transport and
turbulence. In this paper, we develop a method to eÆ-
ciently solve the gyrokinetic Poisson equation with dou-
ble Neumann radial boundary conditions to remove the
singularity and to correctly yield the neoclassical radial
electric �eld.
In this paper, we report our present study of neoclas-

sical transport with self-consistent electric �eld for the
�rst time using a fully nonlinear (full-f) continuum tech-
niques. Because the problem is high dimensional (5D)

with complicated particle orbits in phase space, it is not
a trivial task to construct the good di�erence schemes, for
example, at the internal boundaries on the vk = 0 surface
in phase space, such as the turning points for the trapped
particles in real space, and cutting-cells on vk = 0 bound-
ary surface when two sheets of the distribution function
(f+ for vk � 0 and f� for vk < 0) meet. The neoclassi-
cal transport involves several types of physics interacting
over several scales in time and space: ion orbital dynam-
ics is fast time scale � !b(= vTi=qR0); �ii, and small
spatial scale length �i� and the transport is slow time
scale � q2�ii�

2
i =a

2 for the evolution of ion temperature,
and large spatial scale � a. The time necessary to estab-
lish a rotional steady state is even longer, of order ��3=2

times the neoclassical thermal equilibration times. Here
�i is the ion gyro-radius, ��;i the ion gyro-radius at the
poloidal magnetic �eld, �ii the ion-ion collision rate, q
the safety factor, � the inverse aspect ratio, a the minor
radius of torus, and �i � a. The state of art implicit
method has to be used. The paper is organized as fol-
lows: gyro-kinetic equations are given in Sec. 2; numer-
ical schemes are presented in Sec. 3; Section 4 describes
simulation results; and a summary is given in Sec. 5.

II. GYRO-KINETIC EQUATIONS

Evolution of the plasma species is determined by cou-
pled ion and electron kinetic equations for the time-
dependent �ve-dimensional (5D) distribution functions
simpli�ed from H. Qin, et. al. [3] and T. S. Hahm [4].
The gyrocenter distribution function F�(�x; ��;E0; t) in
gyrocenter coordinates: Z � (�x; ��;E0; t); �x = x � �; � =
b� v=
c� evolves as,
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hÆ�i = h�i � h�0i: (6)

Here Z�e, M� are the electric charge and mass of elec-
trons (� = e), ions (� = i). �� is the magnetic moment.

The left-hand side of Eq. (1) describes the particle mo-
tion in the electric �eld and magnetic �eld. C� is the
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Coulomb collision operator. The over-bar is used for the
gyrocenter variables and h i denotes the gyroangle av-
eraging. Here a splitting scheme has been used for the
electric potential. The �eld � is split into two parts: �0

is the large amplitude and the slow variation part; Æ� is

the small amplitude and the rapid variation part. E0 is
almost energy.
In the long wavelength limit k?�� � 1, the self-

consistent electric �eld is typically computed from the
gyrokinetic Poisson equation for multiple species

X
�

�2�
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r? � (lnN�r?�) +r2� = � 4�e
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r2
?p?�: (7)

The n� and T?� are the normalization density and tem-
perature. The ion gyroradius is �� = vT�=
�, the ion

thermal velocity vT� =
p
2T?�=M�, the ion gyrofre-

quency is 
� = Z�eB=M�c, and the ion Debye length is
�2D� = T?�=4�n�Z

2
�e

2. There are two important distinc-
tions between Eq. (6) and the usual gyrokinetic Poisson
equation [4]. Our gyrokinetic Poisson equation is fully
nonlinear with the gyrocenter density N� and perpen-
dicular ion pressure p?� calculated from the gyrocenter
distribution function F�(�x; ��; �E0; t). The last term of
Eq. (7) is the diamagnetic density from the long wave-
length expansion of the gyroaveraged gyrocenter density
N�(x; t), i.e., from the pull-back transform. Although
the diamagnetic density is small compared to the ion
gyrocenter density, it is of the same order as both the
polarization density in high-beta plasmas and the di�er-
ence between ion and electron gyrocenter densities. This
equation is an extension of the typical neoclassical elec-
tric �eld model including poloidal variation.

III. NUMERICAL SCHEMES

We report on application of TEMPEST, a fully non-
linear (full-f) initial-value gyrokinetic code, to simulate
neoclassical transport and the Geodesic-Acoustic Mode
(GAM) relaxation in edge plasmas. This 5-dimensional
( ; �; �; E0; �) continuum code represents velocity space
via a grid in equilibrium energy (E0) and magnetic mo-
ment (�) variables, and con�guration space via a grid
in poloidal magnetic 
ux ( ), poloidal angle (�) and
toroidal angle (�). The geometry can be a circular annu-
lus or that of a diverted tokamak and so includes bound-
ary conditions for both closed magnetic 
ux surfaces and
open �eld lines. The same set of gyrokinetic equations
are discretized for both geometries. The equations are
solved via a Method-of-Lines approach and an implicit
backward-di�erencing scheme using a Newton-Krylov it-
eration to advance the system in time. The spatial
derivatives are discretized with �nite di�erences while a
high-order �nite volume method is used in velocity space
(E0; �) for the moment calculations. A fourth-order up-
winding algorithm is used for parallel streaming, and a
�fth-order WENO scheme is used for particle cross-�eld

FIG. 1: TEMPEST radial and poloidal meshes in the Ring
geometry, indicated by the cross. The contours of distribution
function F0( ; �; E0; �) with E0 = 15 and � = 6 in orange
represent regions occupied by trapped particles for a given
energy E0 and magnetic moment �, and is overlaid by trapped
particle orbits which is the contour plots of canonical toroidal
angular momentum Ptor( ; �; E0; �) = (q=c) � (I=B)M�vk.

drifts. Boundary conditions at conducting material sur-
faces are implemented on the plasma side of the sheath.
The code includes fully nonlinear kinetic or Boltzmann
electrons. The gyrokinetic Poisson equation in the long
wavelength limit �i=Lp � 1 is solved self-consistently
with the gyrokinetic equations as a di�erential-algebraic
system involving a nonlinear system solve via Newton-
Krylov iteration using a multigrid preconditioned con-
jugate gradient (PCG) solver for the Poisson equation.
Here Lp is a characteristic gradient scale length of plasma
pro�le. The code includes a range of options for colli-
sions: simple Krook collision, Lorentz collision and com-
plete linear and nonlinear collision. A nonlinear Fokker-
Planck collision operator from STELLA [5] in (v; �p)
has been streamlined and integrated into the gyrokinetic
package using the same implicit Newton-Krylov solver
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and interpolating F and dF=dtjcoll to/from (�; �) space,
where �p is the pitch-angle. The description of the TEM-
PEST equations, numerical scheme, and veri�cation tests
have been given in Ref. [7].

In an axisymmetric con�guration, the equilibrium
magnetic �eld is written as B = Ir� +r� �r where
I = RBt. Because the magnetic �eld is inversely propor-
tional to the major radius (B / 1=R), for a given energy
E0 and magnetic moment �, there are inaccessible regions
for particles where v2k = E0��B� q�0 � 0, as indicated

on the left side of ring with bluish-violet color in Fig. 1.
The crosses are TEMPEST radial and poloidal meshes
in the Ring geometry. The contours of distribution func-
tion F0( ; �; E0; �) in orange represent regions occupied
by trapped particles for a given energy E0 and magnetic
moment �. As the trapped particles move radially out-
ward, the orbit size increases with minor radius, indi-
cated by green curves in the Fig. 1. Therefore there exist
internal boundaries for trapped particles in the radial di-
rection. The straightforward upwinding di�erence yields
instabilities near the internal boundary points. Therefore
a 5th order Weno scheme [8] is routinely used for particle
radial drifts.

There are three constants of motion in an axisymmetric
con�guration: the total energy E =M�v

2
k=2+ �B + q�,

the magnetic moment � = M�v
2
?=2B, and the canoni-

cal angular momentum P� = (q=c) � (I=B)M�vk. The
advantage for the choice of (E0; �) coordinates is that
(E0; �) remain constant along particle orbits (in the ab-
sence of collisions and turbulence Æ�), which prevents or-
bit mixing by numerical di�erencing, and the dynamics
associated with particle orbits can be accurately simu-
lated. The disadvantage is in association of the cut-cells
at the bottom of E0 and top �-boundary meshes as shown
on Fig. 2a), where the boundary v2k = E0��B�q�0 = 0

is a straight line cutting through the background grid
and separates the physical (above, v2jj > 0) and non-

physical (below, v2jj < 0) zone. The dotted line with

E0 = �B( ; �) when �0 = 0 inside physical zone (v2jj > 0)

separates the circulating and trapped particles, where the
B( ; �) is the local magnetic �eld. Obviously, the advan-
tage using (E0; �) velocity coordinates is that this phys-
ical boundary is NOT a numerical boundary, and there-
fore there is no additional boundary condition for numeri-
cal �nite di�erence across this boundary. The real numer-
ical boundary conditions are as following. (1) There is no

ow out of the � boundary at � = 0 and E0 = 0; (2) The
two sheets of distribution are continuous at E0 = E0min

and � = �max as shown on Fig. 2b), where vk� = 0.
Here the two sheets of distribution refer to the distribu-
tion with the sign of velocity: f+ for vk � 0 and f� for
vk < 0 for any given energy E0 and magnetic moment
�. At the top of the � mesh, the mesh size for a cut cell
is ��iv;jv = 2d�, where d� is the distance between the
�max = (E0 � qh�0i)=B at vk = 0 and the maximum �-
boundary grid point before reaching the �max at vk = 0
as shown on Fig. 2b), and where the factor of 2 comes
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FIG. 2: a) TEMPEST energy E0 and magnetic moment �
meshes. The boundary v2k = E0 � �B � q�0 = 0 is a straight
dashed line cutting through the background grid and sepa-
rates the physical (above, v2jj > 0) and non-physical (below,

v2jj < 0) zone. b) a sketch of cut cells at bottom of the energy
E0 and top of the magnetic moment meshes �max: d� and
dE0.

from the equal distance d� to the �max for the two sheets
distribution function. At the bottom of the E0 mesh, the
mesh size for a cut cell is �E0iv;jv = 2dE0, where dE0 is
the distance between the E0min = (�MaxB + qh�0i) at
vk = 0 and the minimum E0-boundary grid point above
the E0min at vk = 0 as shown on Fig. 2b). The cut
cells dE0 and d� will have to be merged with its neigh-
boring regular cells if they are too close to the vk = 0
line to avoid arbitrarily small cut-cells, which can lead to
small time step by the restrictive Courant-Friedrich-Lewy
(CFL) stability constraint. The detailed description of a
cell cutting and mergeing scheme is given in Ref. [9]. (3)
At top of energy mesh E0max the exponential extrapo-
lation of the distribution F� in energy is used, assuming
F� = F�(E0max)exp[�(E0�E0max)] beyond the simula-
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tion doman for E0 > E0max.

Radial Robin boundary conditions are used for F� and
potential � at the inner core surface  =  c and the
outer wall surface  =  w. Robin boundary conditions
consist of speci�cation of a linear combination of a �eld
value and its normal derivative at all points of the bound-
ary surface  =  c;w, such as �b�

b + �b@�
b=@ , where

�b; �b;�
b and @�b=@ being prescribed. This is a gener-

alization of Dirichlet (�b = 1 and �b = 0) and Neumann
(�b = 0 and �b = 1) boundary conditions. Since the gy-
rokinetic equation has only a �rst-order radial advection
term, only one boundary condition is used and then only
where the convection is into the domain. No boundary
condition should be imposed for particles convecting out
of the domain; therefore an extrapolation is used at that
boundary.

For neoclassical transport problems, the scale length
of potential L� is determined by the drift orbit size ��;i
and is typically much larger than the gyro-radius (�i,
L� � ��;i � ��), Here ��;i is the ion gyro-radius at the
poloidal magnetic �eld. Hence there is a boundary layer
in Eq. (7) associated with small parameter ��=L� � 1.
Therefore, the Poisson equation (7) is rarely solved. In-
stead, a simpli�ed equation for the radial electric �eld
is used [10] with assumption that the electrostatic po-
tential is constant on the 
ux surface. For edge plas-
mas, the potential has both radial and poloidal variations
due to the endloss in the Scrape-O�-Layer and the as-
sumption is clearly violated. In order to eÆciently solve
Eq. (7), we develop a scheme here to impose the Neu-
mann boundary conditions E = �@�=@ = Const: at
both radial boundary surfaces to eliminate the bound-
ary layer e�ects. However, when the Neumann bound-
ary condition is used for both radial boundaries  =  c
and  =  w, the Poisson problem is ill posed. A tech-
nique used is to remove the global net charge from sim-
ulation domain to ensure that the Poisson problem is
well posed. This constraint is naturally consistent with
plasma quasi-neutrality condition. The same technique
has been used for doubly periodic boundary conditions.
As an illustration, here is a simple example. A 1D Pois-
son equation on a domain 0 <= x <= a with Neu-
mann boundary conditions is �2i @

2�=@x2 = sin(2�x=a)
with @�=@x = 0; (x = 0; x = a). Here �i=a � 1.
The solution to the corresponding equation exists only
if there is no net source in the domain; that is, by inte-
gration, @�=@xjx=a�@�=@xjx=0 = R a

0 dx sin(2�x=a) = 0.
The solution can be obtained by integration as �(x) =
(a=2��i)

2[(2�x=a)�sin(2�x=a)]+C0. There are two no-
ticeable features of the solution: (1) the solution has an
undetermined constant C0. However, the global constant
potential has no physical consequence to the gyrokinetic
equation. (2) The scale length of potential is determined
by the scale length of the source a, not by the small scale
length �i at the boundary surfaces. But, when the small
scales (� �i) turbulence along with large scale orbit size
� ��;i � 10�i co-exists in the source, the same equation
can be solved for multiple spatial scale lengths. These

are the properties needed for the neoclassical turbulent
transport simulations.

IV. SIMULATION RESULTS

In our 4D TEMPEST neoclassical simulations, we con-
sider a simple axisymmetric tokamak with the magnetic
�eld in a circular geometry, given by B = B�e� + B�e�,
where � and � are the toroidal and poloidal angles of a
torus, respectively. The poloidal angle � is chosen such
that � = 0 corresponds to the outboard midplane of the
torus. The inverse aspect ratio � = r=R0 is not as-
sumed to be small, where r is the minor radius. The
major radius is given by R = R0(1+ � cos�) and toroidal
magnetic �eld B� = B0R0=R. The plasma consists of
deuterium ions and electrons. The typical resolution is
n = 32; n� = 64; nE0 = 25 and n� = 50.
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FIG. 3: Radial particle �r (a) and heat 
ux Qr (b) vs dimen-
sionless collision frequency ��i from TEMPEST simulation of
neoclassical ion transport with � = 0. Here a Lorentz collision
operator is used. The solid lines are analytical predictions of
Lin et al. [11].
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A. Neoclassical radial 
uxes

Neoclassical transport is the radial orbital excursions
of particles driven by collision in a toroidal geometry with
an inhomogeneous magnetic �eld. The simulations pre-
sented here are carried out for large aspect ratio circular
geometry with magnetic �eld Bt = 7:5T;R0 = 45:6m,
the safety factor q = �B�=B� = 3 and � = 0:1. The
large B0 and R0 are used for the global simulations
in order to benchmark with analytical theory in the
limit Æi=Lp � 1. Here Lp is a characteristic gradient
scale length of plasma pro�le. The ion guiding cen-
ter density and temperature pro�les are initialized as
a hyperbolic tangent (tanh) function of radius centered
around the middle of simulation domain [such as,N( ) =
n0+nm tanh(( � m)=�n), where  m = ( 0+ L)=2 and
and �n = Æn ln(N( 0)=N( L))( L �  0)]. The bound-
ary ion distribution is a �xed Maxwellian with N0 =
N( 0); nL = N( L) = 0:9N0; Ti0 = Ti( 0) = 3keV ,
and TiL = Ti( L) = 0:9Ti0 during a simulation. The
Æn is a parameter to control the radial scale length. In
this simulation Æn = 50:5. A Lorentz collision model is
used. Given boundary conditions and initial pro�les, the
interior plasmas in the simulations should evolve into a
neoclassical steady state.
A series of TEMPEST simulations are conducted to

investigate the scaling characteristics of the neoclassi-
cal transport as a function of ��i via a density-scan
with N0 = (1 � 1012; 5 � 1012; 1 � 1013; 2 � 1013; 5 �
1013; 1� 1014; 5� 1014; 1� 1015; 5� 1015; 1� 1016)cm�3.
Here ��i is the e�ective collision frequency, de�ned by
��i = ��3=2�ii

p
2qR0=vTi, �ii is the ion-ion collision,

and the ion thermal velocity is vTi =
p
2Ti( 0)=Mi.

The peaks of both particle and heat 
uxes due to the
peak radial gradient drives of density and temperature
are shown in Fig. 3, along with the analytical predic-
tions of Lin et al [11] using a Lorentz collision opera-
tor with a constant frequency. The radial particle and
heat 
ux here and in the rest of paper mean the corre-
sponding 
ux-surface-averaged 
uxes. A time history of
the radial heat 
ux pro�le in Fig. 4a) for ��i = 4:5 in
plateau regime from TEMPEST shows that the simula-
tion reaches steady state solutions. A good agreement
is obtained both in the banana and collisional regimes,
where the analytical theories are valid. The 
at plateau
regime is a theoretical idealization, and the existence has
not been observed in the numerical simulations, either
Particle-In-Cell code [11] or continuum codes [12, 13].
An interesting property of the neoclassical radial 
uxes

is checked in the ��i � 1 regime. Since in this regime
the collision is negligible small, the particle orbits should
be almost closed and therefore there should be almost
no net radial 
uxes. A time history of the radial heat

ux pro�le is shown in Fig. 4b) for ��i = 0:0006 with
N0 = 1 � 1010cm�3 in deep banana regime from TEM-
PEST simulations. The radial heat 
ux oscillates in
time at all radial locations with the same frequency.
Fig. 5 shows that after an initial adjustment due to

a)

b)

FIG. 4: Radial pro�le of radial heat 
ux Qr for (a) ��i =
4:5 and (b) ��i = 0:0006 vs time in the unit of vTi=R from
TEMPEST simulation of neoclassical ion transport with � =
0. Here a Lorentz collision operator is used.

the arbitrary initial conditions the oscillation frequency
is the trapped particle bounce frequency with !b =p
�=2(vTi=qR0); vTi =

p
2Ti( 0)=Mi. The time aver-

aged 
ux is nearly zero during the late time, which is
consistent with the physical expectation.

B. The Geodesic-Acoustic Mode and Neoclassical

Relaxation

The Geodesic-Acoustic Mode (GAM) is a poloidally
asymmetric mode with a coherent and radially local-
ized poloidal 
ow oscillation that is dominant in the
outer regions of the magnetically con�ned toroidal plas-
mas. This mode is characterized by oscillations of the
plasma column in the vertical direction with a char-
acteristic frequency !G ' (

p
7=2)f(q)(vTi=R0), where

f(q) =
p
1 + 46=49q2, and R0 is the major radius of

a torus. The GAM is a normal mode in a homogeneous
plasma, involving particle parallel streaming, cross-�eld
drifts, and acceleration.
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FIG. 5: Radial heat 
ux Qr vs time in the unit of vTi=R
from TEMPEST simulation of neoclassical ion transport with
� = 0. Here a Lorentz collision operator is used. Here L is
the radial box size.

The simulations presented here are carried out for cir-
cular geometry with DIII-D edge parameters: magnetic
�eld Bt = 1:5T;R0 = 1:71m; q = 4 and � = 0:3. The
ion guiding-center density and temperature pro�les are
initialized as a hyperbolic tangent (tanh) function of ra-
dius centered around the middle of the simulation domain
[N( ) = n0+nm tanh(( � m)=�n), where  m = ( w�
 c)=2 and �n = Æn ln(Nc=Nw)( w �  c)]. The Æn is a
parameter to control the radial scale length. In this sim-
ulation Æn = 50:5 and a Lorentz collision model is used.
The boundary ion distribution is a �xed Maxwellian with
Nc = N( c) = 1� 1019m�3; Nw = N( w) = :9Nc; Tic =
Ti( c) = 300eV , and Tiw = Ti( w) = 0:9Tic during a
simulation. The radial boundary condition for the po-
tential is @�( c)=@ = @�( w)@ = 0. The electron
model is the fully nonlinear Boltzmann model. An ini-
tial pulse-like perturbation of the ion density is given
with the peak centered around the middle of the pedestal

Æni = ÆN0( �  m)e
�( � m

�Æn
)2

where dN0 = 0:001 and

Time(v  /R)Ti

φ(
t)

(v
)

q=4
ε=0.3
R/L  =2.09
R/L  =1.56
ρ /R =1.78e-3

T

n

i

x=L /4ψ

x=L /2ψ

x=3L /4ψ

exp(-     t)γGAM

exp(-0.27   t)ν
ii

a)

Time(V  /R)Ti

ψ(L
ψ
/ρ i)

v  ≈12.06pr (ρ /R)vTii

b)

FIG. 6: a) Time evolution of the zonal-GAM potential �(t)
shows GAM oscillation, collisionless damping, and collisional
damping of zonal 
ow residual for a circular geometry with
q = 4 and � = 0:3. n = 32; n� = 64; nE0 = 25, and n� = 50;
b) Contour plot of perturbed ion density Æni=Ni0 = (Ni �
Ni0)=Ni0 as function of radial position and time for the same
parameters. Here L is the radial box size.

�Æn = 0:094( w �  c).
A time history of the potential from TEMPEST shows

in Fig. 6a) the GAM generated by the initial conditions,
damped by the wave-particle resonances and then relaxed
to a Rosenbluth-Hinton residual zonal 
ow. The TEM-
PEST simulations correctly calculate the GAM frequency
!GAM and the collisionless damping rate 
GAM . The
extensive studies of wave-particle resonances and bench-
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TEMPEST data
Neoclassical prediction
in the plateau regime

q=4
ε=0.3
R/L  =2.09
R/L  =1.56
ρ /R =1.78e-3

T

n

i

a)

R(m)

Z(
m

)

δni ni/ b)

R(m)

Z(
m

)

(n - n )/n contouri e i
c)

FIG. 7: (a) E from TEMPEST simulations (black) vs neo-
classical prediction in the plateau regime, and contours of (b)
the relative perturbed ion density Æni=Ni0 = (Ni �Ni0)=Ni0
and (c) the relative charge density (ni � ne)=ni from TEM-
PEST simulation of neoclassical ion transport during the
GAM oscillations

marking with theory have been demonstrated in Ref. [14].
Fig. 6b) shows contour plot of perturbed ion density as
function of the time and radial position. indicating that
the GAM exists in the form of a radial eigenmode at a
given time. For any given radial location, the GAM os-
cillates and decays due to the collisionless and collisional

damping, as shown on Fig. 6a) of the potential time his-
tory. One of the most striking features is that the den-
sity perturbation radially propagates outward inside the
pedestal where the temperature is inhomogeneous with
vp ' 12:05(�s=R)vthi for q = 4, which is qualitatively
consistent with JFT-2M experimental measurement [15].
The radial propagation velocity vp is found to be weakly
dependent on q, and it increases as q decreases, mostly
due to the q-depenence of GAM frequency !GAM for the
�xed plasma pro�les.
However, due to the existence of ion-ion collisions,

the Rosenbluth-Hinton residual is damped with the
damping rate / �ii as shown on Fig. 6a), and then
the potential approaches to neoclassical residual. The
collisional damping rate as measured is 
c ' 0:27�ii,
which is smaller than the local calculations with � � 1
approximation: 
HR = �ii=(0:64

p
�) ' 2:85272�ii [16]

and 
XC = �ii=(4�
3=2) ' 1:52145�ii [17]. During

the development of the electric �eld after initial
GAM phase, the neoclassical radial electric �eld
from TEMPEST simulations is shown in Fig. 7a),
along with the standard neoclassical expression hUiki =

(cTi=ZieBp) [k(@ lnTi=@r)� (@ lnPi=@r)� (Zie=Ti)(@h�i=@r)]

with k=-0.5 in the plateau regime [18]. The radial elec-
tric �eld is generated due to the neoclassical polarization.
Fig. 7 b) and c) shows the contour of the relative ion
density perturbation and the relative charge density
from the TEMPEST simulation. Due to the orbital
dynamics inside the magnetic well, a particle at the
outside midplane streams up and drifts outward from
high density to low density on the upper half of the
plane, then bounces back from the upper turning point,
steams down and drifts inward from low density to
high density in the lower half of the plane, bounces
back from lower turning point and repeats the process
again and agin. The combination of the particle orbits
and radial pro�le of the density yields a poloidal and
radial variation of ion density. Because of the large
di�erence in mass ratio between ion and electron, the
resulting di�erence in orbit size creates a neoclassical
polarization|a poloidal and radial variation of the
charge density, as shown on Fig. 7c).

C. Steady state neoclassical electric �eld and

ambipolarity of neoclassical transport

The simulations presented here are carried out with
the same model and parameters as section 4. 2, except
in this section q = 2 and 
at ion temperature pro�le.
Figure 8a) shows the time evolution of electric poten-
tial at x = 0:25L ; x = 0:5L and x = 0:75L . The
time unit corresponds to one GAM time (vTi=R0). The
electrostatic potential relaxes to a steady state, with the
GAM in the initial phase damped by Laudau resonance
and collision. Fig. 8b) shows the steady-state radial pro-
�les of potential �( ) (red) and density ln(Ni( )=Ni( =
0:5L )) (black) from TEMPEST simulations. Here L is
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FIG. 8: In circular geometry with DIII-D parameters as in
Fig. 7 in the plateau regime, except q = 2 and 
at ion tem-
perature pro�le: a) Time evolution of electrostatic potential
�(t) from TEMPEST simulations at x = 0:25L ; x = 0:5L 
and x = 0:75L , b) Steady-state radial pro�les of potential
�( ) (red) and density ln[Ni( )=Ni( = 0:5L )] (black) from
TEMPEST simulations, obeying a Boltzmann relation;

the radial box size. A Boltzmann relation is reached for
the steady state potential, as expected from theory for
the case of zero temperature gradient [19]. The steady
state parallel velocity is very small due to the speci�ed
Maxwellian radial boundary condition with zero 
ow ve-
locity, which accounts for small di�erence between the
two curves in the Fig. 8b). The ambipolarity of neo-
classical transport with a self-consistent electric �eld is
numerically demonstrated in Fig. 9a) and compared to
the case without E in Fig. 3a). With no electric �eld
a considerable self-collision driven ion 
ux is found and
violates ambipolarity [20]. By our choice of Boltzmann
electrons model, neoclassical electron 
ux is zero; the
quasineutrality constraint forces the net radial ion 
ux
to be zero through the self-consistent radial electric �eld
and its gradient to enforce the orbit squeezing and ex-
passion. The tiny residual 
ux in Fig. 9a) is possibly
due to the non-conserving Lorentz collion model used.
Since there is no temperature gradient, the initial GAM

exists in the form of a radial eigenmode as a stationary
wave without radial propagation as shown on Fig. 9b)
and compared to the case with temperature gradient in
Fig. 6b). This con�rms that the ion temperature inho-
mogeneity is a key factor for GAM radial propagation.

q=2
ε=0.3
R/L  = 2.06
R/L  = 0.0057
ρ /R = 1.76e-3

T

n

i

x=L /4ψ

x=L /2ψ

x=3L /4ψ

Time(v  /R)Ti

0 20 40 60 80
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ψ(
L 

 /ρ
 )

ψ
i
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FIG. 9: In circular geometry with DIII-D parameters as in
Fig. 7 in the plateau regime, except q = 2 and 
at ion temper-
ature pro�le: a) Time evolution of a ion particle 
ux �(t) from
TEMPEST simulations at x = 0:25L ; x = 0:5L and x =
0:75L . The local ion 
ux evolves to a zero steady-state value
when the self-consistent electric �eld is generated. b) Contour
plot of perturbed ion density Æni=Ni0 = (Ni � Ni0)=Ni0 as
function of radial position and time for the same parameters.



10

V. DISCUSSIONS AND SUMMARIES

In the development of a 5D gyrokinetic continuum
code, we have investigated various choices of velocity co-
ordinates, di�erence schemes for parallel streaming and
radial drift, and veri�ed the numerical simulation results
with standard neoclassical theory, using the 4D version
of the TEMPEST code with a Lorentz collision. In a
very low collision regime, a oscillatory 
ux in time has
been demonstrated, as one might be expected because
particles almost stays on the closed orbits.
A numerical technique is presented to eÆciently solve

the gyrokinetic Poisson equation with double Neumann
radial boundary conditions for neoclassical simulations.
The simulation results are found to agree very well with
the classical theory on the development of neoclassi-
cal electric �eld with a Lorentz collision in banana and
plateau regime. In the initial phase of the development
of neoclassical electric �eld, we found that ion tempera-
ture inhomogeneity is a key factor for GAM radial prop-
agation. The density and radial electric �eld perturba-
tion only radially propagates outward inside the pedestal
where the temperature is inhomogeneous. Otherwise the
GAM exists in the form of a radial eigenmode as a sta-
tionary wave without radial propagation. During the de-
velopment of the electric �eld afer the initial GAM phase,
the neoclassical radial electric �eld from TEMPEST sim-
ulations follows with the standard neoclassical expres-
sion for parallel 
ow in the plateau regime. In the �nal
phase of steady state, the Boltzmann relation is reached
between electrostatic potential and ion density for the

case of zero temperature gradient, and the quasineutral-
ity constraint forcing the net radial ion 
ux to be zero is
numerically demostrated.

When we tried to use fully nonlinear FP collision pack-
age from STELLA, we �nd that the Fokker-Planck colli-
sion calculation is too dissipative due to the coordinate
transformation back and forth between energy and mag-
netic moment space (E0; �) with uniform E0 grid and
velocity and pitch angle space (v; �p) with non-uniform
v grid in Fokker-Planck collision package. The better
approach is to develop the nonlinear Fokker-Planck col-
lision operator in term of the 
uxes in E0 and � space,
and interpolate the coeÆcients of the 
uxes from (v; �p)
to (�; �) space. The scheme and results will be reported
in future publications.
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